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What is DP?

• Wikipedia: “. . . simplifying a complicated problem by breaking it
down into simpler sub-problems in a recursive manner."
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General form of a DP solution

1. Define subproblems (original problem usually a particular case)

2. Formulate recursive relation between subproblems

3. Solve base cases

4. Cache subproblem solutions
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Dynamic programming formulation

map<problem, value> memory;

value dp(problem P) {
if (is_base_case(P)) {

return base_case_value(P);
}

if (memory.find(P) != memory.end()) {
return memory[P];

}

value result = some value;
for (problem Q in subproblems(P)) {

result = combine(result, dp(Q));
}

memory[P] = result;
return result;

}
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The staircase problem

Alice is at the bottom of a staircase with n steps. She is able to climb
either 1 or 2 steps at the time.

Problem: How many different ways are there for Alice to get to
the top of the staircase?

For n = 5, she could step on [1, 3, 5], or [2, 4, 5], or [2, 3, 4, 5]. All of
these count as different solutions.

1. Define subproblems (original problem should be particular case)

Let ways(i) = # of ways to get to step i

Then the solution to the original task is ways(n)
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The staircase problem

2. Formulate recursive relation between subproblems
• Let’s say Alice is at step i
• The previous step must have been either i− 1 or i− 2
• If we know ways(i− 1) and ways(i− 2), then we can obtain ways(i)

ways(i) = ways(i− 1) + ways(i− 2)

3. Solve base cases

ways(1) = ways(2) = 1
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The staircase problem

int ways(int n) {
if (n <= 2) {

return 1;
}

int res = ways(n - 2) + ways(n - 1);

return res;
}
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The Fibonacci sequence

int fibonacci(int n) {
if (n <= 2) {

return 1;
}

int res = fibonacci(n - 2) + fibonacci(n - 1);

return res;
}
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The Fibonacci sequence

• What is the time complexity of this? Exponential, almost O(2n)

fib(6)

fib(4)

fib(2) fib(3)

fib(1) fib(2)

fib(5)

fib(3)

fib(1) fib(2)

fib(4)

fib(2) fib(3)

fib(1) fib(2)
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The Fibonacci sequence

4. Cache subproblem solutions

int dp[1000];
for (int i = 0; i < 1000; i++)

dp[i] = -1;

int fibonacci(int n) {
if (n <= 2) return 1;

if (dp[n] != -1) return dp[n];

dp[n] = fibonacci(n - 2) + fibonacci(n - 1);

return dp[n];
}

Total time complexity is O(n)
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Longest increasing subsequence

Given a sequence of numbers a = a1, . . . , an, we say a′ is a subsequence
of a if it can be obtained by deleting some (possible zero) elements from
a.

• Example: a = [5, 1, 8, 1, 9, 2]

• [5, 8, 9] is a subsequence

• [1, 1] is a subsequence

• [5, 1, 8, 1, 9, 2] is a subsequence

• [] is a subsequence

• [8, 5] is not a subsequence

• [10] is not a subsequence
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Longest increasing subsequence

An increasing sequence is such that the elements are in (strictly)
increasing order

Problem: What is the length the Longest Increasing Subsequence
(LIS) of a.

• [5, 8, 9] and [1, 8, 9] are the longest increasing subsequences of
a = [5, 1, 8, 1, 9, 2]

Naive algorithm: There are 2n subsequences, check if each is increasing.
Worst case complexity is O(n2n)

What about dynamic programming?
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Longest increasing subsequence

1. Define subproblems

Let dp(i) = length of LIS ending at element i.

Our original task is then maxi{dp(i)}

2. Formulate recurrence relation
• Let’s say we want to use elements ai as the last element of an IS.
• We can do so for previous ISs that end in an element smaller than ai.

dp(i) = 1+ maxj<i,aj<ai{dp(j)}

3. Solve base cases

dp(0) = 0

4. Cache subproblem results.
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Longest increasing subsequence

int a[1000], dp[1000];
memset(dp, -1, sizeof(dp));

int lis(int i) {
if (dp[i] != -1) return dp[i];

int res = 1;
for (int j = 0; j < i; j++)

if (a[j] < a[i])
res = max(res, 1 + lis(j));

return dp[i] = res;
}
int main(){

int mx = 0;
for (int i = 0; i < n; i++)

mx = max(mx, dp(i));
printf("%d\n", mx);

}

New time complexity O(n2)
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0-1 Knapsack

We have knapsack with maximum capacity W.

There are n available items. The i-th item has weight wi and gives us a
value vi.

Problem: What is the maximum value we can hold in our
knapsack?

• Example: n = 4, W = 10, w = [20, 5, 50, 40], v = [1, 3, 7, 8]

• [3, 4] doesn’t work, weight is 15 > 10.

• [2, 3] fits in the knapsack, but value 55 is not optimal.

• [1, 4] is the solution with value 60.
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0-1 Knapsack

Naive algorithm: For each subset, check weight ≤ W, keep max.
Complexity O(n2n).

We can do better with DP.

1. Define subproblems

Let dp(i, j) = maximum value we can obtain with the first i items
and maximum weight j.

The solution to the original task is dp(n, W).
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0-1 Knapsack

2. Formulate recursive relation
• For given i, j, we can decide to take object i or not to.
• If we don’t take it, we directly reuse the solution of i− 1.
• If we do take it, we can improve our solution by vi, but we now have

to query for j− wi.

dp(i, j) = max(dp(i− 1, j), vi + dp(i− 1, j− wi))

3. Solve base cases

dp(0, j) = dp(i, 0) = 0

4. Cache subproblem solutions
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0-1 Knapsack

int n, W, w[1000], v[1000], dp[1000][1000];
memset(dp, -1, sizeof(dp));

int ks(i, j) {

if (!i || !j) return 0;

if (dp[i][j] != -1) return dp[i][j];

dp[i][j] = max(
ks(i - 1, j),
ks(i - 1, j - w[i]) + v[i]

);

return dp[i][j];
}

New complexity is O(nW).

One issue: stack size
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Top-down vs Bottom-up

• Top-down
• Direct from recursive definition
• Stack usage impacts performance

• Bottom-up
• Implementation can get non-trivial
• O(1) stack usage
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0-1 Knapsack

int n, W, w[1000], v[1000], dp[1000][1000];
memset(dp, 0, sizeof(dp));

int ks() {
for(int i = 1; i <= n; i++) {

for(int j = 1; j <= W; j++) {
dp[i][j] = max(

ks(i - 1, j),
ks(i - 1, j - w[i]) + v[i]

);
}

}

printf("%d\n", dp[i][j]);
}
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Longest common subsequence

Problem: Given 2 sequences a1, . . . , am and b1, . . . , bm, find the lenth
of the longest subsequence they have in common.

a ="bananinn"

b ="kaninan"

The longest common subsequence of a and b, "aninn", has length 5.

1. Define subproblems

Let lcs(i, j) = length of LCS of a1, . . . , ai and b1, . . . , bj.

Our original task is exactly lcs(n, m).

20



Longest common subsequence

2. Formulate recursive relation
• When looking at elements i, j we can decide to match them or not,

if they coincide.
• If they don’t we just reuse the subproblem solution.

lcs(i, j) = max


lcs(i, j− 1)
lcs(i− 1, j)
lcs(i− 1, j− 1) + a[i] == b[j]

3. Solve base cases

lcs(0, j) = lcs(i, 0) = 0

4. Cache subproblem solutions
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Longest common subsequence

string a = "bananinn",
b = "kaninan";

int dp[1000][1000];
memset(dp, 0, sizeof(dp));

int lcs() {
for(int i = 1; i <= a.size(); i++) {

for(int j = 1; j <= b.size(); j++) {
dp[i][j] = max(

max(
dp[i - 1][j],
dp[i][j - 1]

)
dp[i - 1][j - 1] + a[i] == b[j]

)
}

}
printf("%d\n", dp[a.size()][b.size()]);

}

Time complexity is O(nm)
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DP on trees

The diameter of a graph is the length of the longest simple path in it.
Problem: Given a rooted tree with n nodes, compute it’s diameter.

1. Define subproblems

Let f(i) = length of longest path from i to a descendant.

Let g(i) = length of longest path rooted at i.

Since the longest path is rooted at some node, then the solution of the
original task is maxi g(i)
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DP on trees

2. Formulate recursive relation

Let c_1, ..., c_m be the children if node i.

Then, f(i) = 1+maxj{f(cj)}

Also, g(i) = 1+maxj ̸=k{f(cj) + f(ck)}

3. Solve base cases

f(leaf) = g(leaf) = 1
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You should learn DP

• Subset sum

• Coin change

• DP on DAGs

• Edit distance

• Graph distances

• DP with bitmasks

• DP on digits
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