Dynamic Programming

Emmanuel Anaya Gonzalez

Meeting 8. May 28, 2024

Competitive Programming Club @ UCSD

What is DP?

e Wikipedia: “...simplifying a complicated problem by breaking it
down into simpler sub-problems in a recursive manner."

General form of a DP solution

. Define subproblems (original problem usually a particular case)
. Formulate recursive relation between subproblems

. Solve base cases

A W NN =

. Cache subproblem solutions

Dynamic programming formulation

map<problem, value> memory;

value dp(problem P) {
if (is_base_case(P)) {

return base_case_value(P);

if (memory.find(P) != memory.end()) {
return memory [P];

value result = some value;
for (problem Q in subproblems(P)) {
result = combine(result, dp(Q));

memory [P] = result;

return result;

The staircase problem

Alice is at the bottom of a staircase with n steps. She is able to climb
either 1 or 2 steps at the time.

Problem: How many different ways are there for Alice to get to
the top of the staircase?

For n = 5, she could step on [1, 3, 5], or [2,4, 5], or [2,3,4,5]. All of
these count as different solutions.

1. Define subproblems (original problem should be particular case)

Let ways(i) = # of ways to get to step i

Then the solution to the original task is ways(n)

The staircase problem

2. Formulate recursive relation between subproblems

e Let's say Alice is at step i
e The previous step must have been either i —1 ori —2
o If we know ways(i — 1) and ways(i —2), then we can obtain ways(i)

ways(i) = ways(i — 1) + ways(i — 2)
3. Solve base cases

ways(1l) = ways(2) =1

The staircase problem

int ways(int n) {
if (@ <= 2) {
return 1;

int res = ways(n - 2) + ways(n - 1);

return res;

The Fibonacci sequence

int fibonacci(int n) {
if (@ <= 2) {
return 1;

int res = fibonacci(n - 2) + fibonacci(n - 1);

return res;

The Fibonacci sequence

e What is the time complexity of this? Exponential, almost 0(2")

£ib(6)
/ \
£ib(4) £ib(5)
AVEZEN
£ib(2) £ib(3) £1b(3) £ib(4)
VA
£ib(1) £ib(2) £ib(1) £ib(2) £ib(2) £ib(3)

/\

fib(1) fib(2)

The Fibonacci sequence

4. Cache subproblem solutions

int dp[1000];
for (int i = 0; i < 1000; i++)
dpli] = -1;

int fibonacci(int n) {
if (n <= 2) return 1;

if (dp[n] !'= -1) return dpln];
dp[n] = fibonacci(n - 2) + fibonacci(n - 1);

return dp[n];

}

Total time complexity is 0(n)

Longest increasing subsequence

Given a sequence of numbers a = ay,...,a,, we say a’ is a subsequence
of a if it can be obtained by deleting some (possible zero) elements from
a.

Example: a =[5,1,8,1,9,2]

[5,8,9] is a subsequence

[1,1] is a subsequence

[5,1,8,1,9,2] is a subsequence

[] is a subsequence

[8,5] is not a subsequence

[10] is not a subsequence

10

Longest increasing subsequence

An increasing sequence is such that the elements are in (strictly)
increasing order

Problem: What is the length the Longest Increasing Subsequence
(LIS) of a.

e [5,8,9] and [1,8,9] are the longest increasing subsequences of
a=[51,8,1,9,2]

Naive algorithm: There are 2" subsequences, check if each is increasing.
Worst case complexity is 0(n2")

What about dynamic programming?

11

Longest increasing subsequence

1. Define subproblems

Let dp(i) = length of LIS ending at element i.
Our original task is then max;{dp(i)}

2. Formulate recurrence relation

e Let's say we want to use elements a; as the last element of an IS.
e We can do so for previous ISs that end in an element smaller than a;.

dp(i) = 1+ max;<ia <a, {dp(j)}
3. Solve base cases
dp(0) =0

4. Cache subproblem results.

12

est increasing subsequ

int a[1000], dp[1000];
memset(dp, -1, sizeof(dp));

int lis(int i) {
if (dpl[i] !'= -1) return dpl[il;

int res = 1;
for (int j = 0; j < i; j++)
if (a[jl < alil)
res = max(res, 1 + 1lis(j));

return dp[i] = res;

int main(){
int mx = 0;
for (int i = 0; i < nj; i++)
mx = max(mx, dp(i));
printf ("%d\n", mx);
}

New time complexity 0(n?) »

0-1 Knapsack

We have knapsack with maximum capacity W.

There are n available items. The i-th item has weight w; and gives us a
value v;.

Problem: What is the maximum value we can hold in our
knapsack?

e Example: n = 4,W = 10,w = [20,5,50,40],v = [1,3,7, 8]

e [3,4] doesn't work, weight is 15 > 10.
e [2,3] fits in the knapsack, but value 55 is not optimal.
e [1,4] is the solution with value 60.

14

0-1 Knapsack

Naive algorithm: For each subset, check weight < W, keep max.
Complexity 0(n2").

We can do better with DP.
1. Define subproblems

Let dp(i, j) = maximum value we can obtain with the first i items
and maximum weight j.

The solution to the original task is dp(n, W).

15

0-1 Knapsack

2. Formulate recursive relation

e For given i, j, we can decide to take object i or not to.

e If we don't take it, we directly reuse the solution of i — 1.

e If we do take it, we can improve our solution by vi, but we now have
to query for j — w;.

ap(i,3) = max(dp(i — 1,3), vi+dp(i 1,5 —w))
3. Solve base cases
dp(0, j) = dp(i,0) =0

4. Cache subproblem solutions

16

0-1 Knapsack

int n, W, w[1000], v[1000], dp[1000][1000];
memset (dp, -1, sizeof(dp));

int ks(i, j) {
if (!'i || 'j) return O;
if (dplil[j] '= -1) return dplil[j];
dplil [j] = max(
ks(i - 1, j),
ks(i - 1, j - wlil) + v[i]

)8

return dp[il [j];
}

New complexity is O(nW).

One issue: stack size
17

Top-down vs Bottom-up

e Top-down

e Direct from recursive definition
e Stack usage impacts performance

e Bottom-up

e Implementation can get non-trivial
e 0(1) stack usage

18

0-1 Knapsack

int n, W, w[1000], v[1000], dp[1000] [1000];
memset(dp, 0, sizeof(dp));

int ks() {
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= W; j++) {
dp[il [j] = max(
ks(i - 1, j),
ks(i - 1, j - wlil) + v[i]
)8

printf("%d\n", dpl[il[j1);

19

Longest common subsequence

Problem: Given 2 sequences a;,...,a; and by, ..., by, find the lenth
of the longest subsequence they have in common.

a ="bananinn"

b ="kaninan"

The longest common subsequence of a and b, "aninn", has length 5.
1. Define subproblems

Let 1cs(d, j) = length of LCS of a4,...,a; and by,...,bj.

Our original task is exactly 1cs(n,m).

20

Longest common subsequence

2. Formulate recursive relation

e When looking at elements i, j we can decide to match them or not,
if they coincide.
e If they don’t we just reuse the subproblem solution.

les(i,j — 1)
les(i, j) = max < les(i —1,3)
les(d — 1, 3 — 1) + a[i] == b{j]

3. Solve base cases
lcs(0,j) = 1cs(i,0) =0

4. Cache subproblem solutions

21

gest common subsequence

string a = "bananinn",
b = "kaninan";
int dp[1000] [1000] ;
memset (dp, 0, sizeof(dp));

int les() {
for(int i = 1; i <= a.size(); i++) {
for(int j = 1; j <= b.size(); j++) {
dpl[il [j] = max(

max (
dpli - 11[j],
dplillj - 1]

)

dpli - 11[j - 11 + al[il == b[j]

}

T
printf ("%d\n", dpla.size()][b.size()]);

Time complexity is 0(nm)

22

The diameter of a graph is the length of the longest simple path in it.
Problem: Given a rooted tree with n nodes, compute it’s diameter.

1. Define subproblems

Let £(i) = length of longest path from i to a descendant.

Let g(i) = length of longest path rooted at i.

Since the longest path is rooted at some node, then the solution of the
original task is max; g(i)

23

2. Formulate recursive relation
Let c_1, ..., c_m be the children if node i.
Then, £(i) = 1+ max;{f(c;)}
Also, g(i) = 1 4+ max;ju{f(c;) + £(ck)}

3. Solve base cases

f(leaf) = g(leaf) = 1

24

You should learn DP

e Subset sum

e Coin change

e DP on DAGs

e Edit distance

e Graph distances
e DP with bitmasks
e DP on digits

25

