
Dynamic Programming

Emmanuel Anaya Gonzalez

Meeting 8. May 28, 2024

Competitive Programming Club @ UCSD

What is DP?

• Wikipedia: “. . . simplifying a complicated problem by breaking it
down into simpler sub-problems in a recursive manner."

1

General form of a DP solution

1. Define subproblems (original problem usually a particular case)

2. Formulate recursive relation between subproblems

3. Solve base cases

4. Cache subproblem solutions

2

Dynamic programming formulation

map<problem, value> memory;

value dp(problem P) {
if (is_base_case(P)) {

return base_case_value(P);
}

if (memory.find(P) != memory.end()) {
return memory[P];

}

value result = some value;
for (problem Q in subproblems(P)) {

result = combine(result, dp(Q));
}

memory[P] = result;
return result;

}

3

The staircase problem

Alice is at the bottom of a staircase with n steps. She is able to climb
either 1 or 2 steps at the time.

Problem: How many different ways are there for Alice to get to
the top of the staircase?

For n = 5, she could step on [1, 3, 5], or [2, 4, 5], or [2, 3, 4, 5]. All of
these count as different solutions.

1. Define subproblems (original problem should be particular case)

Let ways(i) = # of ways to get to step i

Then the solution to the original task is ways(n)

4

The staircase problem

2. Formulate recursive relation between subproblems
• Let’s say Alice is at step i
• The previous step must have been either i− 1 or i− 2
• If we know ways(i− 1) and ways(i− 2), then we can obtain ways(i)

ways(i) = ways(i− 1) + ways(i− 2)

3. Solve base cases

ways(1) = ways(2) = 1

5

The staircase problem

int ways(int n) {
if (n <= 2) {

return 1;
}

int res = ways(n - 2) + ways(n - 1);

return res;
}

6

The Fibonacci sequence

int fibonacci(int n) {
if (n <= 2) {

return 1;
}

int res = fibonacci(n - 2) + fibonacci(n - 1);

return res;
}

7

The Fibonacci sequence

• What is the time complexity of this? Exponential, almost O(2n)

fib(6)

fib(4)

fib(2) fib(3)

fib(1) fib(2)

fib(5)

fib(3)

fib(1) fib(2)

fib(4)

fib(2) fib(3)

fib(1) fib(2)

8

The Fibonacci sequence

4. Cache subproblem solutions

int dp[1000];
for (int i = 0; i < 1000; i++)

dp[i] = -1;

int fibonacci(int n) {
if (n <= 2) return 1;

if (dp[n] != -1) return dp[n];

dp[n] = fibonacci(n - 2) + fibonacci(n - 1);

return dp[n];
}

Total time complexity is O(n)

9

Longest increasing subsequence

Given a sequence of numbers a = a1, . . . , an, we say a′ is a subsequence
of a if it can be obtained by deleting some (possible zero) elements from
a.

• Example: a = [5, 1, 8, 1, 9, 2]

• [5, 8, 9] is a subsequence

• [1, 1] is a subsequence

• [5, 1, 8, 1, 9, 2] is a subsequence

• [] is a subsequence

• [8, 5] is not a subsequence

• [10] is not a subsequence

10

Longest increasing subsequence

An increasing sequence is such that the elements are in (strictly)
increasing order

Problem: What is the length the Longest Increasing Subsequence
(LIS) of a.

• [5, 8, 9] and [1, 8, 9] are the longest increasing subsequences of
a = [5, 1, 8, 1, 9, 2]

Naive algorithm: There are 2n subsequences, check if each is increasing.
Worst case complexity is O(n2n)

What about dynamic programming?

11

Longest increasing subsequence

1. Define subproblems

Let dp(i) = length of LIS ending at element i.

Our original task is then maxi{dp(i)}

2. Formulate recurrence relation
• Let’s say we want to use elements ai as the last element of an IS.
• We can do so for previous ISs that end in an element smaller than ai.

dp(i) = 1+ maxj<i,aj<ai{dp(j)}

3. Solve base cases

dp(0) = 0

4. Cache subproblem results.

12

Longest increasing subsequence

int a[1000], dp[1000];
memset(dp, -1, sizeof(dp));

int lis(int i) {
if (dp[i] != -1) return dp[i];

int res = 1;
for (int j = 0; j < i; j++)

if (a[j] < a[i])
res = max(res, 1 + lis(j));

return dp[i] = res;
}
int main(){

int mx = 0;
for (int i = 0; i < n; i++)

mx = max(mx, dp(i));
printf("%d\n", mx);

}

New time complexity O(n2)
13

0-1 Knapsack

We have knapsack with maximum capacity W.

There are n available items. The i-th item has weight wi and gives us a
value vi.

Problem: What is the maximum value we can hold in our
knapsack?

• Example: n = 4, W = 10, w = [20, 5, 50, 40], v = [1, 3, 7, 8]

• [3, 4] doesn’t work, weight is 15 > 10.

• [2, 3] fits in the knapsack, but value 55 is not optimal.

• [1, 4] is the solution with value 60.

14

0-1 Knapsack

Naive algorithm: For each subset, check weight ≤ W, keep max.
Complexity O(n2n).

We can do better with DP.

1. Define subproblems

Let dp(i, j) = maximum value we can obtain with the first i items
and maximum weight j.

The solution to the original task is dp(n, W).

15

0-1 Knapsack

2. Formulate recursive relation
• For given i, j, we can decide to take object i or not to.
• If we don’t take it, we directly reuse the solution of i− 1.
• If we do take it, we can improve our solution by vi, but we now have

to query for j− wi.

dp(i, j) = max(dp(i− 1, j), vi + dp(i− 1, j− wi))

3. Solve base cases

dp(0, j) = dp(i, 0) = 0

4. Cache subproblem solutions

16

0-1 Knapsack

int n, W, w[1000], v[1000], dp[1000][1000];
memset(dp, -1, sizeof(dp));

int ks(i, j) {

if (!i || !j) return 0;

if (dp[i][j] != -1) return dp[i][j];

dp[i][j] = max(
ks(i - 1, j),
ks(i - 1, j - w[i]) + v[i]

);

return dp[i][j];
}

New complexity is O(nW).

One issue: stack size

17

Top-down vs Bottom-up

• Top-down
• Direct from recursive definition
• Stack usage impacts performance

• Bottom-up
• Implementation can get non-trivial
• O(1) stack usage

18

0-1 Knapsack

int n, W, w[1000], v[1000], dp[1000][1000];
memset(dp, 0, sizeof(dp));

int ks() {
for(int i = 1; i <= n; i++) {

for(int j = 1; j <= W; j++) {
dp[i][j] = max(

ks(i - 1, j),
ks(i - 1, j - w[i]) + v[i]

);
}

}

printf("%d\n", dp[i][j]);
}

19

Longest common subsequence

Problem: Given 2 sequences a1, . . . , am and b1, . . . , bm, find the lenth
of the longest subsequence they have in common.

a ="bananinn"

b ="kaninan"

The longest common subsequence of a and b, "aninn", has length 5.

1. Define subproblems

Let lcs(i, j) = length of LCS of a1, . . . , ai and b1, . . . , bj.

Our original task is exactly lcs(n, m).

20

Longest common subsequence

2. Formulate recursive relation
• When looking at elements i, j we can decide to match them or not,

if they coincide.
• If they don’t we just reuse the subproblem solution.

lcs(i, j) = max


lcs(i, j− 1)
lcs(i− 1, j)
lcs(i− 1, j− 1) + a[i] == b[j]

3. Solve base cases

lcs(0, j) = lcs(i, 0) = 0

4. Cache subproblem solutions

21

Longest common subsequence

string a = "bananinn",
b = "kaninan";

int dp[1000][1000];
memset(dp, 0, sizeof(dp));

int lcs() {
for(int i = 1; i <= a.size(); i++) {

for(int j = 1; j <= b.size(); j++) {
dp[i][j] = max(

max(
dp[i - 1][j],
dp[i][j - 1]

)
dp[i - 1][j - 1] + a[i] == b[j]

)
}

}
printf("%d\n", dp[a.size()][b.size()]);

}

Time complexity is O(nm)

22

DP on trees

The diameter of a graph is the length of the longest simple path in it.
Problem: Given a rooted tree with n nodes, compute it’s diameter.

1. Define subproblems

Let f(i) = length of longest path from i to a descendant.

Let g(i) = length of longest path rooted at i.

Since the longest path is rooted at some node, then the solution of the
original task is maxi g(i)

23

DP on trees

2. Formulate recursive relation

Let c_1, ..., c_m be the children if node i.

Then, f(i) = 1+maxj{f(cj)}

Also, g(i) = 1+maxj ̸=k{f(cj) + f(ck)}

3. Solve base cases

f(leaf) = g(leaf) = 1

24

You should learn DP

• Subset sum

• Coin change

• DP on DAGs

• Edit distance

• Graph distances

• DP with bitmasks

• DP on digits

25

