
Club Introduction & Dynamic Programming

Shang Zhou & Huize Mao
Meeting 1. October 7, 2024

Competitive Programming Club @ UC San Diego



What is competitive programming?

• Art of solving algorithmic problems in an efficient way
• Solutions should not only always be correct, but also fast
• Usually we are looking for deterministic algorithms finding the best 

solution
• The algorithm is tested on prepared test-cases, meaning that not 

only the solution has to be correct and fast, but it also has to be 
implemented without flaws



What is ICPC? 

• ICPC – International Collegiate Programming Contest
• Organization preparing world-wide competitions in competitive 

programming on collegiate level

Format:
• 10-13 problems 
• Teams of 3 people, but only with one computer
• Each correct solution is 1 point, total time of submissions is the 

tie-breaker
• Every incorrect solution – 20 minutes penalty
• Teams qualifying starting with regional contests, ending with the 

World Finals



Competitions

SoCal – happening every fall in Riverside
• UCSD sends 5-7 teams
NAC/World Finals
• Only the best UCSD team from SoCal participates
• Challenging but rewarding competitions
Other (less serious, more for practice/fun)
• CALICO
• USACO

UCSD Team selection 
• October 19
• More information: https://icpc.ucsd.edu/team-selection/
• We will have one more mock practice this Sunday October 13

https://icpc.ucsd.edu/team-selection/


Platforms

Codeforces
• Great CP platform with varying difficulty of problems and contests
• A lot of blogs and tutorials – good place to learn
Leetcode
• Focused on interview prep, but still pretty good quality problems
• A lot of beginner materials 
Vjudge
• We will use this one for our meetings – make sure to create an 

account!
• More resources: https://icpc.ucsd.edu/resources/



Officers

• Shang, Huize, Raymond, Manu, Julie, Ben, Qihao
• Adviced by CSE & HDSI professor Jingbo
• We are here to help you – please ask us any questions you have, 

both regarding logistics and competitive programming
• https://icpc.ucsd.edu/teams/



Meeting plan

• Mondays 4-6 p.m. at CSE Basement
• 4:00 – 5:45 p.m. Tutorials + Practice
• 5:45 – 6:00 p.m. Pizza



Dynamic Programming

1



Longest Increasing Subsequence

10

Given a sequence of numbers a = a[1], a[2], …, a[n], we say a′ 

is a subsequence of a if it can be obtained by deleting some 
(possible zero) elements from a.

• Example: a = [5, 1, 8, 1, 9, 2]
• [5, 8, 9] is a subsequence
• [1, 1] is a subsequence
• [5, 1, 8, 1, 9, 2] is a subsequence
• [] is a subsequence
• [8, 5] is not a subsequence
• [10] is not a subsequence



Longest Increasing Subsequence

11

An increasing sequence is such that the elements are in 
(strictly) increasing order

Problem: What is the length the Longest Increasing 
Subsequence (LIS) of a.

• [5, 8, 9] and [1, 8, 9] are the longest increasing 
subsequences of a = [5, 1, 8, 1, 9, 2]

Naive algorithm: There are 2n subsequences, check if each is 
increasing. The complexity is O(n2n).

What about dynamic programming?



Longest Increasing Subsequence

12

1. Define subproblems
Let dp[i] represent the length of the longest increasing 
subsequence ending at index i
Our goal is to calculate max{dp[i]}

2. Formulate recurrence
dp[i] = 1 + max{dp[j]} for all j < i where a[j] < a[i]

3. Solve base cases
dp[0] = 0

4. Time Complexity: O(n2)



Longest Increasing Subsequence: O(n log n)

12

1. Maintain a list tails where:
tails[i] is the minimum value that ends a subsequence 
of length i

2. Update tails using the current element with Binary 
Search
For each lament a[i], use Binary Search to find its 
position in tails.
If element is greater than all in tails, append it
Otherwise, replace the element in tails to maintain the 
smallest possible ending value

3. Final result: Length of tails in the length of the LIS



0-1 Knapsack

14

We have knapsack with maximum capacity W.
There are n available items. The i-th item has weight w[i] and 
gives us a value v[i].

Problem: What is the maximum value we can hold in 
our knapsack?

• Example: n = 4, W = 10, w = [1, 3, 7, 8], v = [20, 5, 50, 40]

• [3, 4] doesn’t work, weight is 15 > 10.
• [2, 3] fits in the knapsack, but value 55 is not optimal.
• [1, 4] is the solution with value 60.



0-1 Knapsack

15

1. Approach
Use a dp array to store the best achievable value 
for each capacity

2. dp[j] = max(dp[j], dp[j - weight[i]] + value[i]) 
(iterating from high capacity to low)

3. Complexity: O(nW), where n is the number of 
items, and W is the capacity



0-1 Knapsack with Bitset

15

1. Use bitset to optimize memory and speed
2. Each bit in the bitset represents whether a certain 

weight is achievable
3. Use bitwise operations to update possible 

weights efficiently:
Initialize: bits[0] = 1
For each item: bits |= bits << weight[i]

4. The result: Bit at position j indicates if weight j 
is achievable



More DP Categories

DP on Trees
DP Using Bitfield
Digit DP
Monotonic Queue Optimization Trick
Slope Optimization Trick



Practice Problems

Today's practice problems link: 
https://vjudge.net/contest/661444

https://vjudge.net/contest/661444
https://vjudge.net/contest/661444

