Competitive Programming Club
Meeting 5 - Number Theory

Introduction

Lecture:

1. Sieve of Eratosthenes

2. Properties of Modular Arithmetic

3. Finding Modular Inverses Using Euler's Theorem
4. Exponentiation by Squaring

Practice Problems and Guidance:

Practice Problems Link: https://vjudge.net/contest/627246 (5 problems, all from
ICPC regional contests). | will resolve any questions and debug your code.

Brute Force Version of the Sieve of Eratosthenes

Prime Numbers: Numbers with exactly two factors, like 2, 3, 5, and 7.
Composite Numbers: Numbers with more than two factors, like 4, 6, 8, and 9.

Goal: Identify all prime numbers in the range [1, n].

How It Works: Starting from 2 up to n, make all multiples (at least twice) of each number
as composite.

Result: Numbers that remain unmarked are primes.
Time Complexity: O(n log n).

Note: While not the fastest method available, it is the simplest to implement and widely
used in contests due to its practical efficiency.

4 678|910 Prime Numbers
n1213[14(15(16(17 (18 (19|20 9 3 5 7
211222324 (25|26 |27 |28/29 (30

31(32|33|34(35(36|37|38(39|40
41 |42|43|44|45|46|47|48/49|50
51|52|53|54|55(56|57|58|59|60
61(6263|64|65(66|67 (68|69 |70
7 \72|73|74|75|76|77 |78|79 |80

81(82|83|84(85(86|87|88/89|90
91(92/93(94|95/96|97 (98|99 /100

Sieve of Eratosthenes

Sieve (Pseudocode)

Case 1: n <= 1077
marked[1] = True
for i from 2 to n:
forjfrom2 *itonstepi:
marked[i] = True

Optimization Tip: Store the marked array using a bitset for faster performance.

Sieve (Pseudocode)

Case 2: 1027 < n <=1078
Time Complexity: O(n log log n)
marked[1] = True
for i from 2 to sqrt(n):

if not marked([i]:

forjfrom 2 *ito n step i:
marked][i] = True

Case 3: n> 1078

Use Euler’s Sieve (Linear Sieve).

Definition of Modular Arithmetic

e Definition: Given an integer a¢ and modulus m, the result of modular
arithmetic is @ mod m, which is the remainder after dividing a by m.

e Formula: ¢ = b (mod m) means that a and b are congruent under modulus
m.

e Example: The result of 17 mod 5 is 2 because the remainder of 17 = 5
is 2. Thus, 17 = 2 (mod 5).

Addition Property

If a=b (mod m) and ¢ = d (mod m), then a+c=b+d (mod m).

Subtraction Property

If a=b (mod m) and ¢ =d (mod m), then a —c=b—d (mod m).

Multiplication Property

If a=b (mod m) and ¢ =d (mod m), then a-c=0b-d (mod m).

Division Property (Doesn’t Hold)

e Division generally does not hold in modular arithmetic with modulus m.
e Reason: Direct division by a number usually results in a non-integer.
e Example: For instance, 17 -4 mod 5.

e Modular division can be achieved through modular inverses (which will
be discussed in the following section).

Definition of Modular Inverse

e Modular Inverse: For an integer a, the modular inverse under modulus
m is an integer x such that:

a-r=1 (mod m)

e This equation implies that the product of a and x equals 1 under modulus
m.

e Once the modular inverse x is found. division in modular arithmetic can
be performed as % mod m.

Euler’s Theorem and the Concept of Coprimeness

e Coprimeness: Two numbers a and m are coprime if their greatest com-
mon divisor (GCD) is 1.

e Euler’s Theorem: If a is coprime with the modulus m, then:

a®™ =1 (mod m)

e Here, ¢(m) is the Euler function, representing the count of integers less
than or equal to m that are coprime with m.

e If m is a prime number, then ¢(m) =m — 1.

Using Euler’s Theorem to Compute Modular In-
verse

e According to Euler’s Theorem:

a®™ =1 (mod m)

e To find the modular inverse of a, we can rewrite the equation as:

al=a®™~! (mod m)

-1

e This means that the modular inverse a™ can be computed using expo-

nentiation.

Exponentiation by Squaring

When calculating a® mod m, multiplying a sequentially requires O(b) multipli-
cations, which is inefficient. The Exponentiation by Squaring algorithm reduces
the computation to O(log b) multiplications.

Algorithm Outline

1. Decompose the Exponent by Bits: Express the exponent b in binary.
For instance, b = 11 in binary is ‘1011°, which can be split into 8 + 2 + 1,
or b=2%+2! +2°.

‘ 2 ‘ k
2. Precompute Powers: Compute the powers a.a?.a? a? mod m.
P p P , A~ ; ; :

squaring the result each time.

3. Selective Multiplication: For each binary bit, if the bit is ‘1’, multiply
the corresponding power into the final result.

Example

To compute 7' mod 26:

1. Convert 11 to binary: ‘1011".

2. Compute the required powers: 7', 72,74, 7% mod 26.
e 7' =7 mod 26
e 72 =23 mod 26

e 74 =9 mod 26
e 7 =3 mod 26

3. Use the binary bits:

e Bit 1: ‘1", so theresult is 1 x 7 =7 mod 26.
e Bit 2: ‘1’, so the result is 7 x 23 =5 mod 26.
e Bit 3: ‘07, skip.

e Bit 4: ‘1’, so the result is 5 x 3 = 15 mod 26.

The final result is: 71! mod 26 = 15.

Pseudocode Implementation

function modExp(a, b, m):

result = 1

while b > O:
if bk 2 ==

result = result * a % m

a=ax*xajm
b=k /] 2

return result

Summary and Practice Problems

Recap: This lecture covered the Sieve of Eratosthenes, properties of modular
arithmetic, finding modular inverses using Euler’s theorem, and exponentiation by
squaring.

Practice Problems: Please practice the following problems to reinforce your
understanding of number theory: https://vjudge.net/contest/627246.

If you have any questions about the lecture or need help with hints or debugging
your code, feel free to ask me. | hope this meeting helps you deepen your
understanding of number theory in competitive programming.

https://vjudge.net/contest/627246

