Competitive Programming
Club

Meeting 2

Shortest Paths

Motivation

Sometimes we could convert a problem in to a graph, and a solution to the
problem could be a path in the graph, and the optimal solution to the problem
could be the shortest path in the graph.

Graph nodes could be thought of a state in the problem.

Dijkstra

Objective: finding the shortest path from one node to every other node in a
weighted graph

e \ector data structure to store the graph
o EJi] the nodes that could be reached from

e Algorithm template: https://cp-algorithms.com/graph/dijkstra.html
e Proof by induction

https://cp-algorithms.com/graph/dijkstra.html

Bellman Ford

Objective: find the shortest path from one node to all other node, accounting for
negative edges.(it can also be used to detect negative cycles)

e Algorithm Template: https://cp-algorithms.com/graph/bellman_ford.html

e The algorithmrunsinO (|V | |E]|)times

e The Bellman-Ford algorithm finds the shortest paths from one starting point to
all other points in a graph by updating the distances step-by-step, making
sure each update is closer to the true shortest distance, and it can also detect
if some paths have a cycle that makes the distance infinitely short.

https://cp-algorithms.com/graph/bellman_ford.html

Toy problem

Suppose that we are given a weighted
directed graph G with n vertices and m
edges, and some specified vertex v.
You want to find the length of shortest
paths from vertex v to every other
vertex.

cC —1 — E |

Bellman-Ford To Detect A Negative Cycle In A Graph

Initialize The Distance Array

/(oo) 2 — (00)
5 2
. g -
ource A) 1 _-I ANE
(0) ,(00)
-3
ol
c ! E
(00) "\ (00)

Distance Array
Dist|]

Bellman-Ford To Detect A Negative Cycle In A Graph

Ist Relaxation Of Edges

(8 — 2 —\(c0)
. 2
Source /[A 1 -1 (F)
" (0) . (00) /
e =
-3
Dist [A] + 5 <Dist[B] | I: (go) | 1 > (OEO) J
0+5<(00) b 4 1 >
Dist[B] =5

Bellman-Ford To Detect A Negative Cycle In A Graph

Distance Array

A

B

c

D

E

F

0

(e 0]

(o o]

Qo

Q0o

(e 0]

2nd Relaxation Of Edges

1y 20
3)
Source [A) 1 -1
— ()
Dist [B] + 2 <Dist[D]
5+2<(00)
Dist[D] = 7 Y 1
| Dist [B] + 1 <Dist[C] | =0 1 ¥
is + 1 <Dis ‘ | >)
5+1<(00) (?) ' 3 (90)'
Dist[c] =86

Bellman-Ford To Detect A Negative Cycle In A Graph

Distance Array

A

B

c

D

E

F

0

5

(o o]

Qo

Q0

(e 0]

3rd Relaxation Of Edges

B 2
3)
Source /A 1 -1
"% (0) /
Dist [D] + 2 <Dist[F]
7+2<(00)
Dist[F] =9 ¥ 15
E t[c] +1 <pist[E] | (o)] (-
is + 1 <Dis | | ™)
6+1<(c0) 9 @,
Dist[E] =7

Bellman-Ford To Detect A Negative Cycle In A Graph

Distance Array

A

B

c

D

E

F

0

5

&

7

Q0o

(e 0]

4th Relaxation Of Edges

B
(5)
D
b
~
Source /A 1
- 0
Dist [E] + 2 <Dist[D]
7+(-1)< 7
Dist[D] = 6 . 2
Dist [F] + 1 <Dist[E] | (o)
IS + 1 <Dis \ J
9+(-3) < 6 (6) ’
Dist[E] = 6

A
~~
[

Bellman-Ford To Detect A Negative Cycle In A Graph

Distance Array

A

B

c

D

E

F

8
A 2
AON
-3

0

5

]

?

7

9

5th Relaxation Of Edges

(5) 2= (9
A 2
3)
Source /A 1 = (F A
W)
Dist [E] + (-1) <Dist[D] -3
6+(-1)<6
Dist[D] =5 Y = L /
| Dist [D] + 2 <Dist[F] | (= 1 N
is + 2 <Dis \ f > |
6+2<9 \ (?) / \ (?) /
Dist[F] =8

Bellman-Ford To Detect A Negative Cycle In A Graph

Distance Array

A

B

c

D

E

F

0

5

]

6

6

9

Detecting The Negative Edge

By 6Th Relaxation Of Edges B doh

By — 2 —Q@
A 2
3)
P
Source 7 A ,} 1 -1
— o
Dist [F] + (-3) <Dist[E] -
8+(-3)<6 3
Dist[E] =5 Y /
| Dist [D] + 2 <Dist[F] | (=5 1 L
is + 2 <Dis | ! > |
6+2<8 \ (6) / \ (?) /
Dist[F] =7

Bellman-Ford To Detect A Negative Cycle In A Graph

Distance Array

A|lB|C|D|E]|F
0| 8 & 5|6 |8
A|lB|C|D|E]|F
0|5 § 4 | 4|6

Floyd Warshall

Objective: finding the shortest path between every two nodes

e The use adjacency matrix €[i][j] is the current shortest path for nodes i and |

e Algorithm template:
https://cp-algorithms.com/graph/all-pair-shortest-path-floyd-warshall.html
e [t could be thought of as a DP thus proved by induction

o EJi][j] is actually e[K][i][j], the shortest path reached between i and j using a intermediary node
no larger than k

o Thus €[i][j] = min{e[i][j], e[il[k] + e[K][j]} is equivalent of e[K][i][j] = min{e[k-1][i][j], e[k-1][il[k] +
e[k-1][KI0T}

o Keep this property in mind for one of the practice problems

https://cp-algorithms.com/graph/all-pair-shortest-path-floyd-warshall.html

Example Problem

You are given a number, each time you could apply the following operation to the
number:

1. X +=add[j1], requiring brain_energy[1][j1]
2. X /[=div[j2], requiring brain_energy[2][j2]

3. *= mul[j3], requiring brain_energy[3][j3]
4. X %= mod[j4], requiring brain_energy[4][j4]

Now you have Q queries, each query you want to reach another number qi, what
is the answer to each queries? The minimum brain energy you need to reach qi

Q <= 1076, x <= 1016

Practice Problems

https://viudge.net/contest/622365

Password: ucsd_icpc

https://vjudge.net/contest/622365

