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Shortest Paths



Motivation

Sometimes we could convert a problem in to a graph, and a solution to the
problem could be a path in the graph, and the optimal solution to the problem
could be the shortest path in the graph.

Graph nodes could be thought of a state in the problem.



Dijkstra

Objective: finding the shortest path from one node to every other node in a
weighted graph

e \ector data structure to store the graph
o EJi] the nodes that could be reached from

e Algorithm template: https://cp-algorithms.com/graph/dijkstra.html
e Proof by induction



https://cp-algorithms.com/graph/dijkstra.html

Bellman Ford

Objective: find the shortest path from one node to all other node, accounting for
negative edges.(it can also be used to detect negative cycles)

e Algorithm Template: https://cp-algorithms.com/graph/bellman_ford.html

e The algorithmrunsinO (|V | |E]|)times

e The Bellman-Ford algorithm finds the shortest paths from one starting point to
all other points in a graph by updating the distances step-by-step, making
sure each update is closer to the true shortest distance, and it can also detect
if some paths have a cycle that makes the distance infinitely short.



https://cp-algorithms.com/graph/bellman_ford.html

Toy problem

Suppose that we are given a weighted
directed graph G with n vertices and m
edges, and some specified vertex v.
You want to find the length of shortest
paths from vertex v to every other
vertex.
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Bellman-Ford To Detect A Negative Cycle In A Graph



Initialize The Distance Array
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Ist Relaxation Of Edges
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2nd Relaxation Of Edges
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3rd Relaxation Of Edges
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4th Relaxation Of Edges
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5th Relaxation Of Edges
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Detecting The Negative Edge
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Floyd Warshall

Objective: finding the shortest path between every two nodes

e The use adjacency matrix €[i][j] is the current shortest path for nodes i and |

e Algorithm template:
https://cp-algorithms.com/graph/all-pair-shortest-path-floyd-warshall.html
e [t could be thought of as a DP thus proved by induction

o EJi][j] is actually e[K][i][j], the shortest path reached between i and j using a intermediary node
no larger than k

o  Thus €[i][j] = min{e[i][j], e[il[k] + e[K][j]} is equivalent of e[K][i][j] = min{e[k-1][i][j], e[k-1][il[k] +
e[k-1][KI0T}

o Keep this property in mind for one of the practice problems



https://cp-algorithms.com/graph/all-pair-shortest-path-floyd-warshall.html

Example Problem

You are given a number, each time you could apply the following operation to the
number:

1. X +=add[j1], requiring brain_energy[1][j1]
2. X /[=div[j2], requiring brain_energy[2][j2]

3. *= mul[j3], requiring brain_energy[3][j3]
4. X %= mod[j4], requiring brain_energy[4][j4]

Now you have Q queries, each query you want to reach another number qi, what
is the answer to each queries? The minimum brain energy you need to reach qi

Q <= 1076, x <= 1016



Practice Problems

https://viudge.net/contest/622365

Password: ucsd_icpc


https://vjudge.net/contest/622365

