
Two Pointers, Sliding 
Window, Merge Intervals

Ben Johnson



Two Pointers

- Mostly useful for array/list data structures
- Maintain two pointers/indices, continuously update them to solve problem
- For example, slide pointers toward each other
- Usually, advance and/or use 1 of 2 pointers depending on some condition 

(e.g. array elements)



Two Pointers - Example 1 (Merge Sort)

- Merge two sorted arrays into one sorted array
- Maintain two pointers, one for each input array, initially at the beginning
- For each step, compare values of elements at each pointer, add smaller to 

output array, and increment that pointer
- Keep going until you reach end of both arrays
- Leetcode: 

https://leetcode.com/problems/merge-sorted-array/description/?envType=pro
blem-list-v2&envId=two-pointers 

https://leetcode.com/problems/merge-sorted-array/description/?envType=problem-list-v2&envId=two-pointers
https://leetcode.com/problems/merge-sorted-array/description/?envType=problem-list-v2&envId=two-pointers


Two Pointers - Example 1 (Merge Sort)

1 3 4 5 8

1 2 2 4 7

1 1 2 2 3 4 4 5 7 8

(Solve on whiteboard)



Two Pointers - Example 1 (Merge Sort)
vector<int> merge_sort(const vector<int> &v1, const vector<int> &v2) {

   vector<int> result;

   int v1_pointer = 0, v2_pointer = 0;

   while (v1_pointer < v1.size() || v2_pointer < v2.size()) {

       if (v2_pointer >= v2.size() || (v1_pointer < v1.size() && v1[v1_pointer] < v2[v2_pointer])) {

           result.push_back(v1[v1_pointer++]);

       } else {

           result.push_back(v2[v2_pointer++]);

       }

   }

   return result;

}



Two Pointers - Example 2 (Find K Closest Elements)

- Given a sorted array and two integers k and x, return the k closest integers to 
x in the array (in sorted order)

- “Closest” meaning minimum absolute value of difference
- Break ties by choosing the smaller element
- Leetcode: 

https://leetcode.com/problems/find-k-closest-elements/description/?envType=
problem-list-v2&envId=two-pointers 

https://leetcode.com/problems/find-k-closest-elements/description/?envType=problem-list-v2&envId=two-pointers
https://leetcode.com/problems/find-k-closest-elements/description/?envType=problem-list-v2&envId=two-pointers


Two Pointers - Example 2 (Find K Closest Elements)

- Solution: Maintain two pointers (left and right of what will eventually be the k 
closest elements), starting at the start and end of the array

- While there are more than k elements between left and right pointer:
- “Bring in” (i.e. increase left/decrease right) pointer with greater distance 

from x (left wins ties)
- Return the elements between left and right pointers



Two Pointers - Example 2 (Find K Closest Elements)

1 2 4 5 8

(Solve on whiteboard)k = 2, x = 3



Two Pointers - Example 2 (Find K Closest Elements)
vector<int> findClosestElements(vector<int>& arr, int k, int x) {

   int left_pointer = 0, right_pointer = arr.size() - 1;

   while ((right_pointer - left_pointer) >= k) {

       int left_difference = abs(arr[left_pointer] - x);

       int right_difference = abs(arr[right_pointer] - x);

       if (left_difference <= right_difference) {

           right_pointer--;

       } else {

           left_pointer++;

       }

   }

   // Add all elements between left_pointer and right_pointer to the result

   vector<int> result(k);

   for (int i = 0; i < k; i++) {

       result[i] = arr[left_pointer + i];

   }

   return result;

}



Sliding Window

- Maintain a window (contiguous subarray) of an array
- Continuously update window (e.g. grow/shrink) to maintain an invariant or 

optimize a quantity
- Can be thought of as a specific type of two pointers algorithm where the 

pointers are start & end indices of a window

1 2 4 5 8

Example Window



Sliding Window - Example 1 (Longest Repeating 
Character Replacement)

- Given a string s and an integer k, return the length of the longest substring 
you can get after perform the following operation at most k times:

- Choose any character of the string and change it to any other character
- Input string consists only of uppercase letters
- 1 <= s.length <= 10^5 
- Leetcode: 

https://leetcode.com/problems/longest-repeating-character-replacement/descr
iption/?envType=problem-list-v2&envId=sliding-window 

https://leetcode.com/problems/longest-repeating-character-replacement/description/?envType=problem-list-v2&envId=sliding-window
https://leetcode.com/problems/longest-repeating-character-replacement/description/?envType=problem-list-v2&envId=sliding-window


Sliding Window - Example 1 (Longest Repeating 
Character Replacement)

- Solution: maintain a window of the longest possible substring satisfying 
these constraints

- Continuously slide the end index right by 1, then slide the start index right by 
1 until we satisfy the constraint, then record window length (take max)

- Maintain an array of counts of each of 26 uppercase letters in window, update 
by incrementing/decrementing when sliding window

- Constraint translates to: window size <= highest count + k



Sliding Window - Example 1 (Longest Repeating 
Character Replacement)

(Solve on whiteboard)

Example input: 

s = "AABABBA", k = 1



Sliding Window - Example 1 (Longest Repeating 
Character Replacement)
   int characterReplacement(string s, int k) {

       int n = s.size();

       int window_start = 0, window_end = 0;

       int result = 0;

       vector<int> char_counts(26, 0);

       char_counts[s[0] - 'A'] = 1;

       while (window_end < n) {

           int window_size = window_end - window_start + 1;

           int most_common_char_count = 0;

           for (int count : char_counts) {

               most_common_char_count = max(most_common_char_count, count);

           }

           if (most_common_char_count + k < window_size) {

               char_counts[s[window_start] - 'A']--;

               window_start++;

           } else {

               result = max(result, window_size);

               window_end++;

               if (window_end < n) {

                   char_counts[s[window_end] - 'A']++;

               }

           }

       }

       return result;

   }



Merge Intervals

- Given an array of intervals (each with a start and end index), merge all 
overlapping intervals return an array of merged, now non-overlapping 
intervals

- 1 <= intervals.length <= 10^4
- Leetcode: https://leetcode.com/problems/merge-intervals/description/ 

https://leetcode.com/problems/merge-intervals/description/


Merge Intervals

- Solution: Sort intervals by increasing end index. Add the first interval to the 
result, then iterate over the remaining intervals. For each interval:

- Pop all overlapping intervals from the end of the result
- Add the interval to the result; if we’ve popped any previous intervals, 

adjust start of interval to earliest start of itself & popped intervals
- Runtime analysis: O(n), where n is number of intervals, since each interval is 

pushed at most once and popped at most once (no need for binary search on 
earliest interval to remove)



Merge Intervals

Intervals = [[1,3],[2,6],[8,10],[15,18]] (Solve on whiteboard)



Merge Intervals
vector<vector<int>> merge_intervals(vector<vector<int>>& intervals) {

   sort(intervals.begin(), intervals.end(), [&](auto &interval1, auto &interval2) {

       return interval1[1] < interval2[1] || (interval1[1] == interval2[1] && interval1[0] < interval2[0]);

   });

   vector<vector<int>> result = {intervals[0]};

   for (int i = 1; i < intervals.size(); i++) {

       auto &interval = intervals[i];

       int newIntervalStart = interval[0];

       while (result.size() > 0 && result[result.size() - 1][1] >= interval[0]) {

           newIntervalStart = min(newIntervalStart, result[result.size() - 1][0]);

           result.erase(result.begin() + result.size() - 1);

       }

       result.push_back({newIntervalStart, interval[1]});

   }

   return result;

}



Practice Contest

- https://vjudge.net/contest/667415 

https://vjudge.net/contest/667415

